Liquid & Vapor Delivery for ALD/CVD/MOCVD Nanotechnology Development

Craig Noah UGIM 2016

Background-Delivery Systems

TriChem 3 Chemical 4-Delivery Points MOCVD Bubbler System

Compact DLI System

Background-Containers

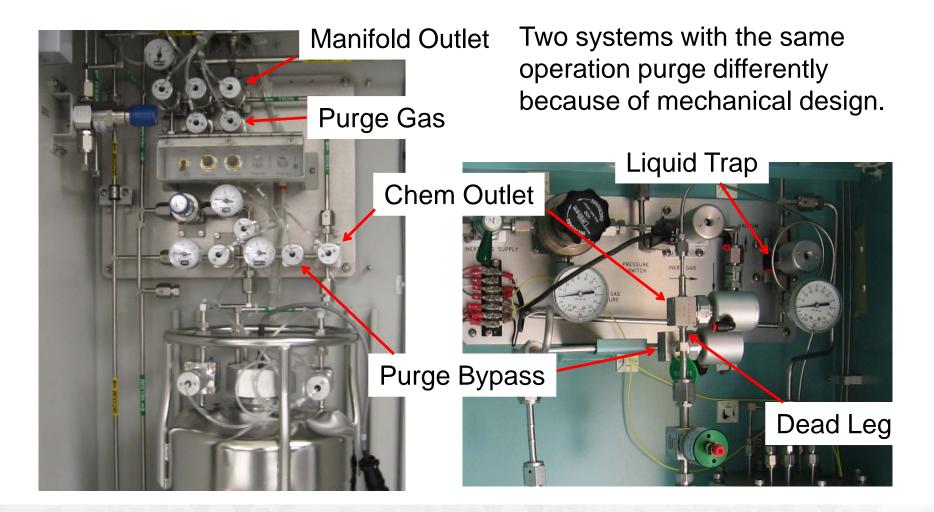
Application Specific Small Bulk, Ampules, Bubblers & Level Sensing Solutions

Topic Focus-Compact DLI System

- LPCVD Application
- Liquid & DLI System
- Low volume use
- Furnace retrofit
 - Inside furnace enclosure
- Minimal installation cost
- Versatile platform
 - Easily repurposed

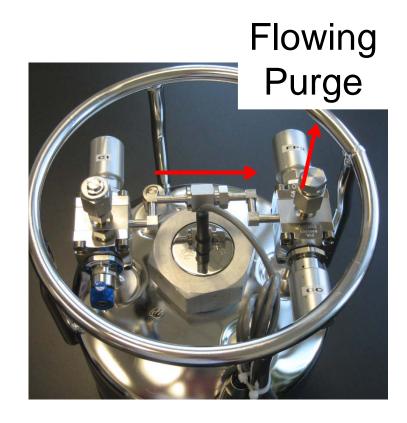
ALD/CVD/MOCVD Applications

- ALD of high gate oxide for high-performances devices
- ALD of top/gate electrode on the gate oxide
 - Pt, TiN, SrRuO3, WC, TaxCy, WwTixCyNz (WTiCN)
- ALD and MOCVD of catalytic materials
 - metals, oxides, nitrides,...
- MOCVD of high k gate oxide for low power devices
 - HfO2, HfySiyOz (HfSiO), HfwSixOyNz (HfSiON), HfxZr1-xO2 (HfZrO2), HfwLaxOyNz (HfLaON), SrTiO3, BaTiO3, TiO2 based materials...
- MOCVD of III-V and II-VI semiconductor materials
 - Nitrides, selenides (CISe, CIGSe), sulphides (CIS, ZnS, In2S3), SiC...
- MOCVD of phase change materials for PCRAM applications
 - Multimetallic alloys, tellurides (GST)
- MOCVD of high k gate oxide for DRAM applications
 - BaxSr1-xTiO3 (BST)
- MOCVD of ferroelectric materials for FeRAM applications
 - SBT, PZT
- MOCVD of piezoelectric materials for MEMS applications
 - PZT, PLZT
- ...and more

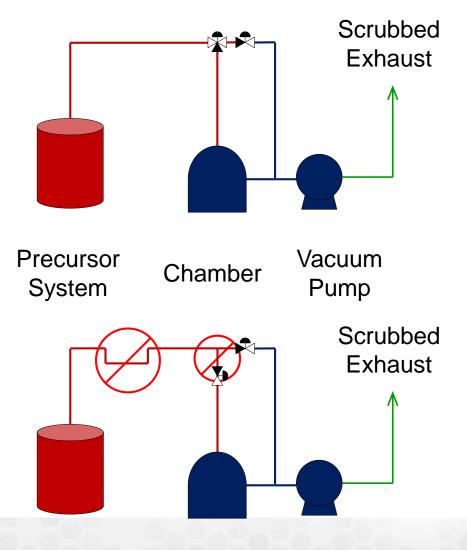


Liquid Delivery & Material Properties

- ALD/CVD/MOCVD precursors are reactive and pose physical and health risks.
- Primary system priority is purgeability to remove trace liquid and vapor residues for:
 - Container replacement
 - Delivery System and process tool service
- Liquids do not behave like gasses
- Liquid physical properties determine purge requirements
 and system architecture
 - High V.P. liquids require simple purging
 - Low V.P. liquids & solutions require solvent purging that multiplies system complexity
- Delivery piping must be considered


System Design & Purging

Container Design & Purging



Purge Bypass Improves Liquid & Vapor Purging

Delivery line design & purging

- Minimum length
- Minimize diameter
 - Channelling
- High flow outlet to vacuum
- No traps or dead legs

Level Monitoring

- Scales
 - Tare weight vs. contents
- Internal Sensors
 - Float Switch
 - Optical
 - Ultrasonic
 - Point
 - Continuous

5 kg ampule 1.5 kg contents

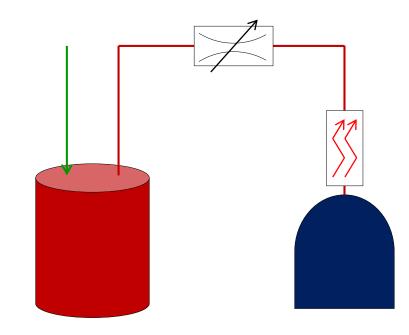
Vapor Delivery

- Solids
 - Sublimation
- Liquids
 - Vapor Draw
 - High V.P. Only
 - Carrier Gas (Bubblers)
 - Pure compounds only
 - Direct Liquid Injection
 - Different methods

Carrier Gas Delivery

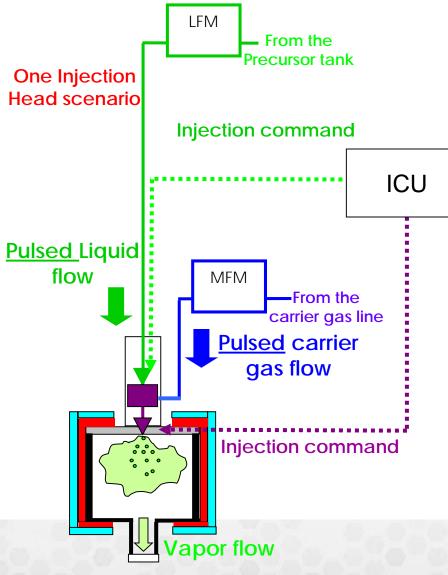
- Bubbler held at constant temperature
 - Keeps vapor pressure constant
- Carrier gas saturation variables
 - Physical properties
 - Heat of vaporization
 - Temperature
 - Bubble size
 - Bubble residence time
 - Decreases as level decreases

Carrier gas delivery


- Bubblers temp control
 - Bath
 - Recirculaters
 - Peltier Temp Controllers
- Carrier Gas MFC
- Process line pressure monitoring
- Downstream flow control
- Heated process line

Typical direct liquid injection

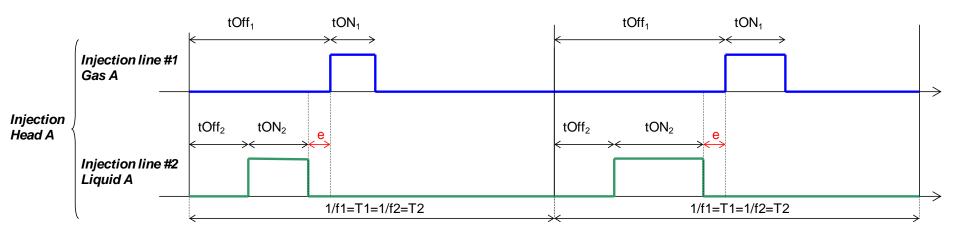
- Ambient temp source
- Regulated push gas
- Liquid mass flow
 controller
- Vaporization chamber/injector
- Heated line to chamber



Carrier Gas vs. Classical DLI

- Carrier gas
 - Precursor delivery is variable
 - Mixtures cannot be used
 - Solutions cannot be used
 - Inappropriate for temperature sensitive compounds
- Classical DLI
 - Precusor delivery is constant
 - Mixtures can be used
 - Solutions present problems
 - Injectors clog
 - Better for temperature sensitive compounds
 - Atomization is not controlled
 - Precursor build-up in chamber

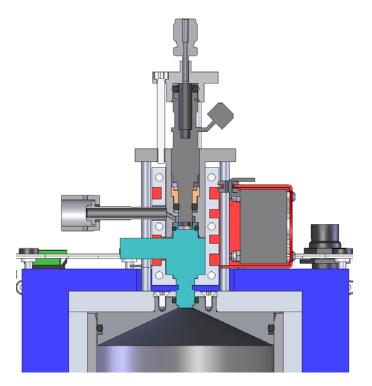
Pulsed flow direct liquid injection



- Regulated precursor push gas
- Regulated inert carrier gas
- Liquid flow monitor
- Mass flow monitor
- Injection control unit
 - Uses LFM and MFM signals to provide independent liquid and gas flow control
 - Controls liquid injector and mixture injector precisely
 - Injectors operate out of phase
- Heated atomizer flash vaporizes
 precursor into vaporizer
- Vapor flows to chamber

Pulsed injection control

- Gas and liquid injectors operate out of phase
- Pulse width controls mass flow
- Gas pulse blasts liquid through the injector and atomizes the liquid



Injection details

KEMSTREAM Advanced Vaporizers •••

- Pulsed injection of liquid-carrier gas mixture
- Liquid is kept at room temperature thanks to air cooling
 - Minimize risk of thermal decomposition prior to injection
- Strong thermal gradient at mix injector tip
- Thermal protection
 - Thermal switch (NC 70°C)
 - Injection is stopped in case of overheating
- Injector control
 - Working in PWM mode (Pulse Width Modulation) injectors are tuned to contol mass flow
 - Opening time is 1 to 50 msec (typically 1 to 10 msec)
 - Frequency is 0.1 to 50 Hz (typically 1 to 20 Hz)

Pulsed flow vs. classical DLI KEMSTR

- Improved atomization ullet
 - Carrier gas blasting effect leads to smaller droplets
 - Droplet sizes
 - Classical LPI is 100 to 300 µm (LPI = Low Pressure Injection)
 - HPDI is 6 to 60 µm with max population at 22 µm (HPDI = High Pressure) Direct Injection)
- New LPI is 5 to 40 µm with max population at 10 µm
- Longer droplet residence time inside the vaporizer
- Delivery method into the vaporizer creates lower velocity • droplets and more time to vaporize before reaching the hot walls of the vaporizer
- No injector clogging when solutions are used
 - Mixing of liquid and carrier gas done upstream of valve
 - No dead volume downstream of valve

Additional benefits

- Solutions can be made from higher molecular weight compounds to reduce corrosive problems (TiCl₄) to TilPr
- Pyrophorics can be diluted in solvent to decrease flammability (TMA)

Wide Range of Precurors

- Liquid compounds/precursors
 - Organometallic
 - TEOS, TEOG [Ge(OEt)₄], DADBS, BTBAS, n-C₁₈H₃₇Si(OCH₃)₃ (n-octadecyl trimethoxysilane), VO(OⁱPr)₃, silane A-174 (3-Methacryloxypropyltrimethoxysilane), TTIP, TDMAT
 - Organic
 - n-dodecane (n- $C_{12}H_{26}$), n-hexadecane (n- $C_{16}H_{34}$)
 - Monomeres (thermally sensitive, polymerizes easily): glycidyl methacrylate, neopentyl methacrylate, 2-ethylhexyl methacrylate, 2-perfluorohexyl ethyl acrylate (C6)
- Solid and liquid organometallic precursors (dissolved in an organic solvent)
 - β-diketonates
 - Al(acac)₃, Fe(acac)₃, Co(acac)₃, Cu(thd)₂, Y(thd)₃, Zr(thd)₄, [Ba(thd)₂]₄ = "Ba(thd)₂", Ba(thd)₂(H₂O)₂, La(thd)₃, Gd(thd)₃, Dy(thd)₃, Yb(thd)₃, Bi(thd)₃(LB)
 - Selenium and sulphur containing organometallic compounds (without oxygen)
 - Strontium tridentate β-ketoiminates
 - Carboxylate [M(RCO₂)n]
 - Ag(piv)
 - Alkoxides
 - Hafnium and zirconium amino alkoxides ones
 - Alkyls
 - Pt(Me)₂(norbornadiene) and tellurium one
 - Amidos
 - TDMAT, TBTDET, TDEAT and germanium one

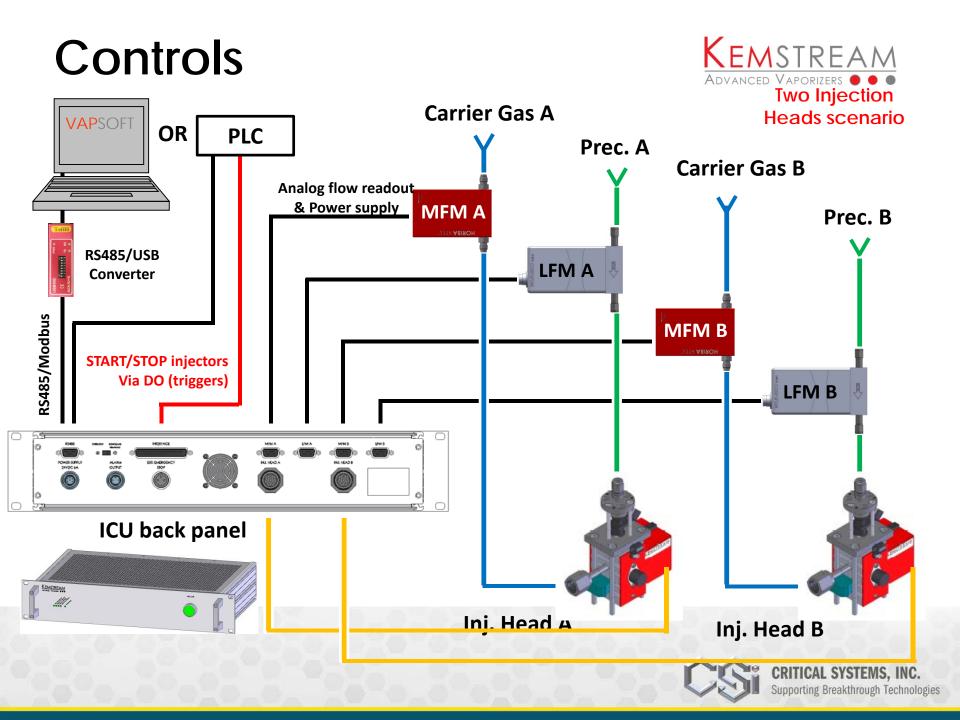
Kemstream Vaporizers

♦ VAPBOX 300 DLI CVD/ALD vaporizer

- Very compact vaporizer with 1 injection head, 220°C capable, 1 heating zone
- Pure liquids; solids dissolved in a carrier liquid (solutions)
- R&D & pilot production

♦ VAPBOX 500 DLI CVD/ALD vaporizer

- Compact vaporizer with 1 injection head, 250°C capable, 1 heating zone
- Pure liquids; solids dissolved in a carrier liquid (solutions)
- R&D, pilot production and production
- High k materials and associated electrodes: vaporization of transition metals precursors (titanium, zirconium, hafnium, tantalum,...), Low k materials: vaporization of polysiloxanes


♦ VAPBOX 1500 DLI CVD/ALD vaporizer

- Vaporizer with 1 or 2 injection heads, **300°C** capable, 3 independent heating zones
- Low vapor pressure liquids; solids dissolved in a carrier liquid (solutions)
- R&D, pilot production and production
- Very high k materials: vaporization of "difficult" precursors such as barium, strontium and lanthanides (lanthanum, cerium,...) ones

♦ VAPBOX 4000 DLI CVD/ALD vaporizer

- Vaporizer with 3 or 4 injection heads, **250°C** capable, 3 or 6 independent heating zones
- Low vapor pressure liquids; solids dissolved in a carrier liquid (solutions)
- Pilot production and production
- PCRAM: vaporization of germanium, antimony and tellurium precursors, YBCO, ferroelectric

Purdue Birck Technology Center

- LPCVD Project
- Tool retrofit
- Limited process support from tool supplier
- Limited installation space
- Controls integration cost considerations
- Future application opportunity

Installation

Wrap-up

- Implementing CVD liquid and vapor delivery must take into account the nature of the materials
- Evaluating existing equipment capabilities and new requirements allows informed decisions
- Close end-user supplier collaboration creates good outcomes
- Minimizing equipment footprint and installation/implementation costs conserves budget
- Selecting equipment that can be retasked at minimal cost extends value

Acknowledgements

- Critical Systems, Inc.
- Dan Hosler-Purdue
- Dallas Morrisette-Purdue

